A block is attached to a spring as shown and very-very gradually lowered so that finally spring expands by $"d"$. If same block is attached to spring & released suddenly then maximum expansion in spring will be-
$d$
$2\,d$
$3\,d$
$4\,d$
To simulate car accidents, auto manufacturers study the collisions of moving cars with mounted springs of different spring constants. Consider a typical simulation with a car of mass $1000\; kg$ moving with a speed $18.0\; km / h$ on a rough road having $\mu$ to be $0.5$ and colliding with a horizontally mounted spring of spring constant $6.25 \times 10^{3} \;N m ^{-1} .$ What is the maximum compression of the spring in $m$?
When a $1.0\,kg$ mass hangs attached to a spring of length $50 cm$, the spring stretches by $2 \,cm$. The mass is pulled down until the length of the spring becomes $60\, cm.$ What is the amount of elastic energy stored in the spring in this condition, if $g = 10 m/s^{2}$ ............. $\mathrm{Joule}$
Two bodies $A$ and $B$ of masses $m$ and $2m$ respectively are placed on a smooth floor. They are connected by a spring. A third body $C$ of mass $m$ moves with velocity $V_0$ along the line joining $A$ and $B$ and collides elastically with $A$ as shown in fig. At a certain instant of time $t_0$ after collision, it is found that instantaneous velocities of $A$ and $B$ are the same. Further at this instant the compression of the spring is found to be $x_0$. Determine the spring constant
A mass of $1\, kg$ is hanging from a spring of spring constant $1\, N/m$. If Saroj pulls the mass down by $2\,m$. The work done by Saroj is......$J$
Find the maximum tension in the spring if initially spring at its natural length when block is released from rest.