A block is attached to a spring as shown and very-very gradually lowered so that finally spring expands by $"d"$. If same block is attached to spring & released suddenly then maximum expansion in spring will be-
$d$
$2\,d$
$3\,d$
$4\,d$
To simulate car accidents, auto manufacturers study the collisions of moving cars with mounted springs of different spring constants. Consider a typical simulation with a car of mass $1000\; kg$ moving with a speed $18.0\; km / h$ on a rough road having $\mu$ to be $0.5$ and colliding with a horizontally mounted spring of spring constant $6.25 \times 10^{3} \;N m ^{-1} .$ What is the maximum compression of the spring in $m$?
A ball of mass $2 \,m$ and a system of two balls with equal masses $m$ connected by a massless spring, are placed on a smooth horizontal surface (see figure below). Initially, the ball of mass $2 \,m$ moves along the line passing through the centres of all the balls and the spring, whereas the system of two balls is at rest. Assuming that the collision between the individual balls is perfectly elastic, the ratio of vibrational energy stored in the system of two connected balls to the initial kinetic energy of the ball of mass $2 \,m$ is
Initially spring is in natural length and both blocks are in rest condition. Then determine Maximum extension is spring. $k=20 N / M$
Two springs have their force constant as ${k_1}$ and ${k_2}({k_1} > {k_2})$. When they are stretched by the same force
A ball of mass $m_1$ falls from height $h_1$ from rest to strike a spring of force constant $K$, which forces another ball of mass $m_2$ to jump on a horizontal floor at a height $h_2$ below from it. Find the horizontal distance at which ball of mass $m_2$ strikes from the position of start :- [Spring does not move]